skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sidford, Aaron"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available January 1, 2027
  2. Free, publicly-accessible full text available January 1, 2027
  3. We consider the problem of estimating the spectral density of the normalized adjacency matrix of an $$n$$-node undirected graph. We provide a randomized algorithm that, with $$O(n\epsilon^{-2})$$ queries to a degree and neighbor oracle and in $$O(n\epsilon^{-3})$$ time, estimates the spectrum up to $$\epsilon$$ accuracy in the Wasserstein-1 metric. This improves on previous state-of-the-art methods, including an $$O(n\epsilon^{-7})$$ time algorithm from [Braverman et al., STOC 2022] and, for sufficiently small $$\epsilon$$, a $$2^{O(\epsilon^{-1})}$$ time method from [Cohen-Steiner et al., KDD 2018]. To achieve this result, we introduce a new notion of graph sparsification, which we call \emph{nuclear sparsification}. We provide an $$O(n\epsilon^{-2})$$-query and $$O(n\epsilon^{-2})$$-time algorithm for computing $$O(n\epsilon^{-2})$$-sparse nuclear sparsifiers. We show that this bound is optimal in both its sparsity and query complexity, and we separate our results from the related notion of additive spectral sparsification. Of independent interest, we show that our sparsification method also yields the first \emph{deterministic} algorithm for spectral density estimation that scales linearly with $$n$$ (sublinear in the representation size of the graph). 
    more » « less
    Free, publicly-accessible full text available June 30, 2026
  4. Free, publicly-accessible full text available June 15, 2026
  5. Meka, Raghu (Ed.)
    We provide a general method to convert a "primal" black-box algorithm for solving regularized convex-concave minimax optimization problems into an algorithm for solving the associated dual maximin optimization problem. Our method adds recursive regularization over a logarithmic number of rounds where each round consists of an approximate regularized primal optimization followed by the computation of a dual best response. We apply this result to obtain new state-of-the-art runtimes for solving matrix games in specific parameter regimes, obtain improved query complexity for solving the dual of the CVaR distributionally robust optimization (DRO) problem, and recover the optimal query complexity for finding a stationary point of a convex function. 
    more » « less
  6. We show that any memory-constrained, first-order algorithm which minimizes d-dimensional, 1-Lipschitz convex functions over the unit ball to 1/poly(d) accuracy using at most $$d^{1.25-\delta}$$ bits of memory must make at least $$\tilde{Omega}(d^{1+(4/3)\delta})$$ first-order queries (for any constant $$\delta in [0,1/4]$$). Consequently, the performance of such memory-constrained algorithms are a polynomial factor worse than the optimal $$\tilde{O}(d)$$ query bound for this problem obtained by cutting plane methods that use $$\tilde{O}(d^2)$$ memory. This resolves a COLT 2019 open problem of Woodworth and Srebro. 
    more » « less